当前位置:首页 > 篮球资讯 > 正文内容

2015-2016赛季NBA赛事比分简单数据分析

杏彩体育3年前 (2022-11-22)篮球资讯386

数据来源:某数据分析QQ群(群友下载于NBA官方网站)

原始数据比较简单,依次包含了比赛日期、比赛开始时间、客队、客队得分、主队、主队得分、个人比赛数据(Box Score)、是否有加时赛、备注等。虽然数据简单,但依然有非常大的分析空间。本文为了实践之前学习的R语言相关内容,只做了一项非常简单的数据分析。

导入数据

数据为CSV文件,直接使用R语言导入CSV文件的方法。

#导入csv数据 setwd("F:/Temporary") NBA_data <- read.table("NBA_data.csv", header = TRUE, sep = ",", colClasses = c("character", "character", "character", "character", "character", "character", "character", "character"), stringsAsFactors = FALSE)

其中,第二个参数header默认为FALSE,即数据框的列名为“V1,V2...”,设置为TRUE时以CSV文件的第一行作为列名。参数sep是分隔数据的分隔符,默认为空格,可以设置为逗号(sep=,),分号(sep=;)和制表符(tab)。参数colClasses 为每一列指定一个类,为了方便处理,先将所有的数据都指定为字符型(character)。由于字符型数据在读入时自动转换为因子,所以参数stringAsFactors=FALSE是为了防止导入的数据进行任何的因子转换。

具体可查阅《R语言实战(第2版)》第二章中“2.3.2 从带分隔符的文本文件导入数据”相关内容。关于如何导入Excel数据可以参考文章【R语言】:导入Excel数据 【R语言】:简单数据处理分析

数据预处理

一、重命名列名

为了方便处理,在导入数据时保留了文件中的第一行作为列名。

首先对原始数据进行初步分析:第一列比赛日期(Date)的列名无需更改;第二列为比赛开始时间,原列名包含有英文缩写ET,推测其为美国东部时间East Time的缩写,决定把列名更改为Start_time;第三列为客场或中立球队,更改为V_team;第四列是客队得分,更改为V_PTS;第五列是主场或中立球队,更改为H_team;第六列是主队得分,更改为H_PTS;第七列是详细的个人比赛数据,应该有内链,但没有抓取到,随后删除;第八列标记了是否进行了加时赛(如果有是OT,没有为空);第九列是备注,全部为空,随后删除。

#重命名列名 names(NBA_data) <- c("Date", "Start_time", "V_team", "V_PTS", "H_team", "H_PTS", "BS", "Overtime", "Notes")

二、删除无效数据和缺失值

1、删除第七列和第九列的无效数据

#删除第七列和第九列 NBA_data <- NBA_data[, c(-7, -9)]

可参考文章:【R语言】:基本数据管理(2)

2、删除观测的缺失值

比赛日期、客队、客队得分、主队、主队得分这五个列向量为空的数据都需要删除。

#删除观测(行)的缺失值,五个列向量为空的数据都需要删除 NBA_data <- NBA_data[!is.na(NBA_data$Date),] NBA_data <- NBA_data[!is.na(NBA_data$V_team),] NBA_data <- NBA_data[!is.na(NBA_data$V_PTS),] NBA_data <- NBA_data[!is.na(NBA_data$H_team),] NBA_data <- NBA_data[!is.na(NBA_data$H_PTS),]

应该能用更简单的代码来实现,但暂时不清楚,以后遇到了再补充更改。

三、处理日期、数据类型转换、数据排序

1、处理日期

比赛日期这一列包含的内容为星期(缩写)+月(缩写)+日(数字)+年(数字),利用函数str_split_fixed()将该列拆分为星期、月日年两列。

#处理日期 library("stringr") datesplit <- str_split_fixed(NBA_data$Date, " ", n=2)

这两列数据在随后数据分析中都有用,将在分析之前再跟实际需求分别赋值到数据框中。

2、数据类型转换

将比赛分数转换为数值格式,以便于之后的相关计算。

#数据类型转换 NBA_data$V_PTS <- as.numeric(NBA_data$V_PTS) NBA_data$H_PTS <- as.numeric(NBA_data$H_PTS)

3、数据排序

此外,原始数据已经按照比赛时间的升序排列,目前暂时不变,之后将根据需要另做排序。

简单数据分析

NBA整个赛季的比赛非常多,整个赛季总共近1300场比赛。可一个赛季下来,一周7天从星期一到星期天,到底联盟更喜欢把比赛安排到哪一天呢?会是周五晚上,还是周六晚上呢?还是其他某天晚上呢?

#另存一个新数据框NBA_days NBA_days <- NBA_data #把datesplit中的第一列“星期几”全部赋值给Date列 NBA_days$Date <- datesplit[, 1]

运行代码后可得

1、统计每天比赛的数量

#周一的比赛数量 NBA_Mon <- NBA_days[NBA_days$Date == "Mon",] Mon_num <- nrow(NBA_Mon) #同理可得周二到周日的比赛数量 NBA_Tue <- NBA_days[NBA_days$Date == "Tue",] Tue_num <- nrow(NBA_Tue) NBA_Wed <- NBA_days[NBA_days$Date == "Wed",] Wed_num <- nrow(NBA_Wed) NBA_Thu <- NBA_days[NBA_days$Date == "Thu",] Thu_num <- nrow(NBA_Thu) NBA_Fri <- NBA_days[NBA_days$Date == "Fri",] Fri_num <- nrow(NBA_Fri) NBA_Sat <- NBA_days[NBA_days$Date == "Sat",] Sat_num <- nrow(NBA_Sat) NBA_Sun <- NBA_days[NBA_days$Date == "Sun",] Sun_num <- nrow(NBA_Sun)

2、新建数据框,包含星期和天数(参考【R语言】:基本数据管理(1)

#新建数据框NBA_week NBA_week <- data.frame(WeekDays = c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"), WD_num = c(Mon_num, Tue_num, Wed_num, Thu_num, Fri_num, Sat_num, Sun_num))

3、2015-2016赛季NBA一周每天的比赛数量

#用函数barplot()画柱状图 P1 <- barplot(NBA_week$WD_num, width=1, space=NULL, names.arg = NBA_week$WeekDays, beside=TRUE, col=rainbow(14), col.axis="blue", col.lab="black", col.main="red", main = "2015-2016赛季NBA一周每天比赛数量", xlab="星期", ylab="比赛场次", ylim=c(0,300), axis.lty=1) #函数text()和函数minor.tick()调整文本和坐标轴刻度 text(P1, NBA_week$WD_num, NBA_week$WD_num, col = "black", pos=3) library(Hmisc) minor.tick(ny=5, tick.ratio = 0.5)

其中,关于函数text()和函数minor.tick()的详细用法可参考:【R语言】:图形初阶(3)

4、简单分析

NBA整个2015-2016赛季(包含常规赛和季后赛),在一周内周三晚上的比赛数量最多(竟然不是周末),其次是周五晚上,周一晚上和周六晚上的比赛数量一样多,并列第三。

后记

NBA的各项数据是一个非常大的数据宝藏,今天这个非常简单的数据分析的小例子,仅仅利用非常少量的数据以及非常简单的数据源。

稍微展开,就能想到更多复杂的分析,比如:

所有NBA球队常规赛(季后赛)主场(客场)平均得分(失分);

某支球队常规赛主场平均得分(失分)、客场平均得分(失分),季后赛主场平均得分(失分)、客场平均得分(失分);

某支球队常规赛(全部、主场、客场)的胜率、季后赛(全部、主场、客场)的胜率、包含加时赛(全部、主场、客场)胜率、得分(失分)上百(未上百)的比赛胜率;

某支球队周几的比赛胜率最高、几点开始的比赛胜率最高。

NBA数据几乎拥有无限多可以分析的点以及可以深挖的内容,并且NBA各支球队目前也非常重视各项数据,并且用于指导球队的技战术提升和比赛。

扫描二维码推送至手机访问。

版权声明:本文由杏彩体育-专注全球体育资讯发布,如需转载请注明出处。

本文链接:http://www.redirected.net/?id=12

分享给朋友:

“2015-2016赛季NBA赛事比分简单数据分析” 的相关文章

碧江:体育赋能乡村振兴 孩子心中植下篮球梦

碧江:体育赋能乡村振兴 孩子心中植下篮球梦

原标题:碧江:体育赋能乡村振兴 孩子心中植下篮球梦 习近平总书记指出,“体育承载着国家强盛、民族振兴的梦想。体育强则中国强,国运兴则体育兴”。站在新的东西部协作起点上,东莞南城组团(南城、莞城、望牛墩、松山湖)把促进人的全面发展作为文化体育工作的出发点和落脚点,不断创新东西部协作...

爷青回!詹姆斯三大交易方案出炉!1换5,重回热火最靠谱?

爷青回!詹姆斯三大交易方案出炉!1换5,重回热火最靠谱?

据美媒《洛杉矶时报》记者丹-沃伊克报道,禅师菲尔-杰克逊将再次出山重新组建湖人队教练组(负责选帅及交易)。他虽然没有任何职位,但作为湖人老板珍妮巴斯的男朋友,菲尔-杰克逊在球队之中拥有绝对的话语权。他现阶段最为明确的态度是不会在新赛季交易威少,禅师对于威少的实力一直青睐有加,他认为湖人前任...

76人vs爵士│NBA推荐│NBA│篮球NBA│篮球推荐│NBA推荐分析

76人vs爵士│NBA推荐│NBA│篮球NBA│篮球推荐│NBA推荐分析

原标题:76人vs爵士│NBA推荐│NBA│篮球NBA│篮球推荐│NBA推荐分析 76人vs爵士│NBA推荐│NBA│篮球NBA│篮球推荐│NBA推荐分析 NBA 76人vs爵士 2022-11-14 周一 08:30 费城76人 费城76...

今晚!CCTV5直播中国男篮,周琦领衔!姚明放弃督战?郭艾伦落选

今晚!CCTV5直播中国男篮,周琦领衔!姚明放弃督战?郭艾伦落选

今晚!CCTV5直播中国男篮,周琦领衔!胡明轩怯战?姚明放弃督战?郭艾伦落选 北京时间11月11日晚(今晚)21时30分,2023年男篮世界杯预选赛亚大区第五窗口期上演一场焦点对决,中国男篮国家队对阵坐拥东道主之利的老对手伊朗男篮。 共有3大平台将转播本场比赛,中央广播电视...

全网1.2亿人观看直播!快手“乡村篮球冠军杯”再现村BA盛况

全网1.2亿人观看直播!快手“乡村篮球冠军杯”再现村BA盛况

露天的篮球场上,来自基层村镇的篮球队员奔跑拼抢、激情对赛,角逐拖拉机冠军大奖;场边驻足围观的观众上有八十岁的老球迷、下有十几岁的青少年,现场还有闽南特色拉满的舞狮、提线木偶戏和南少林武术表演。9月16日、17日晚...

如今爆火的蔡徐坤之梗到底在何出处?

如今爆火的蔡徐坤之梗到底在何出处?

蔡徐坤 1998年生浙江人,2012参加《向上吧!少年》进入全国前200强进娱乐圈,直到2018年1月参加爱奇艺《偶像练习生》真人秀以NINE PERCENT九人男团C位出道并担任队长之后在网上经常上热搜榜,因此“蔡徐坤”这个名字让大家所熟知。 一、蔡徐坤打篮球...