当前位置:首页 > 篮球资讯 > 正文内容

2015-2016赛季NBA赛事比分简单数据分析

杏彩体育3年前 (2022-11-22)篮球资讯388

数据来源:某数据分析QQ群(群友下载于NBA官方网站)

原始数据比较简单,依次包含了比赛日期、比赛开始时间、客队、客队得分、主队、主队得分、个人比赛数据(Box Score)、是否有加时赛、备注等。虽然数据简单,但依然有非常大的分析空间。本文为了实践之前学习的R语言相关内容,只做了一项非常简单的数据分析。

导入数据

数据为CSV文件,直接使用R语言导入CSV文件的方法。

#导入csv数据 setwd("F:/Temporary") NBA_data <- read.table("NBA_data.csv", header = TRUE, sep = ",", colClasses = c("character", "character", "character", "character", "character", "character", "character", "character"), stringsAsFactors = FALSE)

其中,第二个参数header默认为FALSE,即数据框的列名为“V1,V2...”,设置为TRUE时以CSV文件的第一行作为列名。参数sep是分隔数据的分隔符,默认为空格,可以设置为逗号(sep=,),分号(sep=;)和制表符(tab)。参数colClasses 为每一列指定一个类,为了方便处理,先将所有的数据都指定为字符型(character)。由于字符型数据在读入时自动转换为因子,所以参数stringAsFactors=FALSE是为了防止导入的数据进行任何的因子转换。

具体可查阅《R语言实战(第2版)》第二章中“2.3.2 从带分隔符的文本文件导入数据”相关内容。关于如何导入Excel数据可以参考文章【R语言】:导入Excel数据 【R语言】:简单数据处理分析

数据预处理

一、重命名列名

为了方便处理,在导入数据时保留了文件中的第一行作为列名。

首先对原始数据进行初步分析:第一列比赛日期(Date)的列名无需更改;第二列为比赛开始时间,原列名包含有英文缩写ET,推测其为美国东部时间East Time的缩写,决定把列名更改为Start_time;第三列为客场或中立球队,更改为V_team;第四列是客队得分,更改为V_PTS;第五列是主场或中立球队,更改为H_team;第六列是主队得分,更改为H_PTS;第七列是详细的个人比赛数据,应该有内链,但没有抓取到,随后删除;第八列标记了是否进行了加时赛(如果有是OT,没有为空);第九列是备注,全部为空,随后删除。

#重命名列名 names(NBA_data) <- c("Date", "Start_time", "V_team", "V_PTS", "H_team", "H_PTS", "BS", "Overtime", "Notes")

二、删除无效数据和缺失值

1、删除第七列和第九列的无效数据

#删除第七列和第九列 NBA_data <- NBA_data[, c(-7, -9)]

可参考文章:【R语言】:基本数据管理(2)

2、删除观测的缺失值

比赛日期、客队、客队得分、主队、主队得分这五个列向量为空的数据都需要删除。

#删除观测(行)的缺失值,五个列向量为空的数据都需要删除 NBA_data <- NBA_data[!is.na(NBA_data$Date),] NBA_data <- NBA_data[!is.na(NBA_data$V_team),] NBA_data <- NBA_data[!is.na(NBA_data$V_PTS),] NBA_data <- NBA_data[!is.na(NBA_data$H_team),] NBA_data <- NBA_data[!is.na(NBA_data$H_PTS),]

应该能用更简单的代码来实现,但暂时不清楚,以后遇到了再补充更改。

三、处理日期、数据类型转换、数据排序

1、处理日期

比赛日期这一列包含的内容为星期(缩写)+月(缩写)+日(数字)+年(数字),利用函数str_split_fixed()将该列拆分为星期、月日年两列。

#处理日期 library("stringr") datesplit <- str_split_fixed(NBA_data$Date, " ", n=2)

这两列数据在随后数据分析中都有用,将在分析之前再跟实际需求分别赋值到数据框中。

2、数据类型转换

将比赛分数转换为数值格式,以便于之后的相关计算。

#数据类型转换 NBA_data$V_PTS <- as.numeric(NBA_data$V_PTS) NBA_data$H_PTS <- as.numeric(NBA_data$H_PTS)

3、数据排序

此外,原始数据已经按照比赛时间的升序排列,目前暂时不变,之后将根据需要另做排序。

简单数据分析

NBA整个赛季的比赛非常多,整个赛季总共近1300场比赛。可一个赛季下来,一周7天从星期一到星期天,到底联盟更喜欢把比赛安排到哪一天呢?会是周五晚上,还是周六晚上呢?还是其他某天晚上呢?

#另存一个新数据框NBA_days NBA_days <- NBA_data #把datesplit中的第一列“星期几”全部赋值给Date列 NBA_days$Date <- datesplit[, 1]

运行代码后可得

1、统计每天比赛的数量

#周一的比赛数量 NBA_Mon <- NBA_days[NBA_days$Date == "Mon",] Mon_num <- nrow(NBA_Mon) #同理可得周二到周日的比赛数量 NBA_Tue <- NBA_days[NBA_days$Date == "Tue",] Tue_num <- nrow(NBA_Tue) NBA_Wed <- NBA_days[NBA_days$Date == "Wed",] Wed_num <- nrow(NBA_Wed) NBA_Thu <- NBA_days[NBA_days$Date == "Thu",] Thu_num <- nrow(NBA_Thu) NBA_Fri <- NBA_days[NBA_days$Date == "Fri",] Fri_num <- nrow(NBA_Fri) NBA_Sat <- NBA_days[NBA_days$Date == "Sat",] Sat_num <- nrow(NBA_Sat) NBA_Sun <- NBA_days[NBA_days$Date == "Sun",] Sun_num <- nrow(NBA_Sun)

2、新建数据框,包含星期和天数(参考【R语言】:基本数据管理(1)

#新建数据框NBA_week NBA_week <- data.frame(WeekDays = c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"), WD_num = c(Mon_num, Tue_num, Wed_num, Thu_num, Fri_num, Sat_num, Sun_num))

3、2015-2016赛季NBA一周每天的比赛数量

#用函数barplot()画柱状图 P1 <- barplot(NBA_week$WD_num, width=1, space=NULL, names.arg = NBA_week$WeekDays, beside=TRUE, col=rainbow(14), col.axis="blue", col.lab="black", col.main="red", main = "2015-2016赛季NBA一周每天比赛数量", xlab="星期", ylab="比赛场次", ylim=c(0,300), axis.lty=1) #函数text()和函数minor.tick()调整文本和坐标轴刻度 text(P1, NBA_week$WD_num, NBA_week$WD_num, col = "black", pos=3) library(Hmisc) minor.tick(ny=5, tick.ratio = 0.5)

其中,关于函数text()和函数minor.tick()的详细用法可参考:【R语言】:图形初阶(3)

4、简单分析

NBA整个2015-2016赛季(包含常规赛和季后赛),在一周内周三晚上的比赛数量最多(竟然不是周末),其次是周五晚上,周一晚上和周六晚上的比赛数量一样多,并列第三。

后记

NBA的各项数据是一个非常大的数据宝藏,今天这个非常简单的数据分析的小例子,仅仅利用非常少量的数据以及非常简单的数据源。

稍微展开,就能想到更多复杂的分析,比如:

所有NBA球队常规赛(季后赛)主场(客场)平均得分(失分);

某支球队常规赛主场平均得分(失分)、客场平均得分(失分),季后赛主场平均得分(失分)、客场平均得分(失分);

某支球队常规赛(全部、主场、客场)的胜率、季后赛(全部、主场、客场)的胜率、包含加时赛(全部、主场、客场)胜率、得分(失分)上百(未上百)的比赛胜率;

某支球队周几的比赛胜率最高、几点开始的比赛胜率最高。

NBA数据几乎拥有无限多可以分析的点以及可以深挖的内容,并且NBA各支球队目前也非常重视各项数据,并且用于指导球队的技战术提升和比赛。

扫描二维码推送至手机访问。

版权声明:本文由杏彩体育-专注全球体育资讯发布,如需转载请注明出处。

本文链接:http://www.redirected.net/?id=12

分享给朋友:

“2015-2016赛季NBA赛事比分简单数据分析” 的相关文章

中国高中篮坛现大比分!145-15,大胜130分!比赛一开始就结束了

中国高中篮坛现大比分!145-15,大胜130分!比赛一开始就结束了

就在早些时候,广东汕头的澄海区高中生联赛,华侨中学对澄华中学,一场赢了对手一百来分。 最终比赛结束——半场81-2,全场145-15。 昨天,华侨中学与当地另外一支隆都中学进行了比赛。 比赛结束,比分定格在133-14。 四节的细分如下:...

U球直播孟菲斯灰熊vs萨克拉门托国王 国王可否连胜

U球直播孟菲斯灰熊vs萨克拉门托国王 国王可否连胜

 北京时间2022年11月23日9:00,2022-2023NBA常规赛,6连胜的国王面对灰熊,可否作客拿下7连胜的佳绩。 基本分析:   本赛季的国王得分效率高得突破我们常规认知。   上赛季的灰熊以黑马的身份进入季后赛,但是由于经验的不足,球队无法走的...

球迷呼吁篮协尽快解决CBA新赛季的直播问题,怒批资本垄断的危害

球迷呼吁篮协尽快解决CBA新赛季的直播问题,怒批资本垄断的危害

近日,许多球迷纷纷发声,强烈建议和呼吁篮协和相关体育主管部门以及电视台体育频道,要从大局出发,顺应人民群众的新期待,在第二阶段的CBA比赛中,一定要尽快解决CBA篮球赛事的电视直播问题,千万不要让篮球市场被资本垄断而跑偏方向甚至陷入泥潭。立体看体育,客观评篮球。大家好,鲁...

直播预告 | 篮球总决赛,谁会捧杯?

直播预告 | 篮球总决赛,谁会捧杯?

原标题:直播预告 | 篮球总决赛,谁会捧杯? 简阳市融媒体中心 ‍‍ 2022年简阳市第六届职工篮球比赛决赛 即将打响! 明天,对,就是明天! 小伙伴们有没有非常激动呢? 喜欢篮球的兄dei们是不是 已经按捺不住自己啦!...

蔡徐坤打篮球动画化,比原版还帅,网友:“最强”10月新番?

蔡徐坤打篮球动画化,比原版还帅,网友:“最强”10月新番?

线上看动漫,享受二次元,这里是每天都会给大家带来二次元趣事的游戏日报鱼蛋蛋。 近日,B站UP主“Light小俊”上传了一支标题为“耗时12天,动画化徐坤打篮球,十月最强新番上线”的...

原创
            一个“调戏”蔡徐坤,一个“指责”蔡徐坤!蔡徐坤今天咋了?

原创 一个“调戏”蔡徐坤,一个“指责”蔡徐坤!蔡徐坤今天咋了?

原标题:一个“调戏”蔡徐坤,一个“指责”蔡徐坤!蔡徐坤今天咋了? 《青春有你2》发布会,蔡徐坤遭遇“两大难题”!看他如何应对! 其实在虫子天下想要点评孙红雷和兄弟们之间感情的话题的时候,就已经看到了一则关于蔡徐坤的媒体报道!今天的蔡徐坤,似乎参加了一个叫做《青春有你2》的...